Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
biorxiv; 2023.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2023.12.07.570670

ABSTRACT

Coronavirus disease 2019 (COVID-19) and associated severity has been linked to uncontrolled inflammation and may be associated with changes in the microbiome of mucosal sites including the gastrointestinal tract and oral cavity. These sites play an important role in host-microbe homeostasis and disruption of epithelial barrier integrity during COVID-19 may potentially lead to exacerbated inflammation and immune dysfunction. Outcomes in COVID-19 are highly disparate, ranging from asymptomatic to fatal, and the impact of microbial dysbiosis on disease severity is unclear. Here, we obtained plasma, rectal swabs, oropharyngeal swabs, and nasal swabs from 86 patients hospitalized with COVID-19 and 12 healthy volunteers. We performed 16S rRNA sequencing to characterize the microbial communities in the mucosal swabs and measured circulating cytokines, markers of gut barrier integrity, and fatty acids in the plasma samples. We compared these plasma concentrations and microbiomes between healthy volunteers and the COVID-19 patients who had survived or unfortunately died by the end of study enrollment, and between severe disease and healthy controls, as well as performed a correlation analysis between plasma variables and bacterial abundances. The rectal swabs of COVID-19 patients had reduced abundances of several commensal bacteria including Faecalibacterium prausnitsii, and an increased abundance of the opportunistic pathogens Eggerthella lenta and Hungatella hathewayi. Furthermore, the oral pathogen Scardovia wiggsiae was more abundant in the oropharyngeal swabs of COVID-19 patients who died. The abundance of both H. hathewayi and S. wiggsiae correlated with circulating inflammatory markers including IL-6, highlighting the possible role of the microbiome in COVID-19 severity, and providing potential therapeutic targets for managing COVID-19.


Subject(s)
COVID-19 , Inflammation , Dysbiosis
2.
biorxiv; 2022.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2022.08.06.503050

ABSTRACT

The alveolar type II (ATII) pneumocyte has been called the defender of the alveolus because, amongst the cell's many important roles, repair of lung injury is particularly critical. We investigated the extent to which SARS-CoV-2 infection incapacitates the ATII reparative response in fatal COVID-19 pneumonia, and describe massive infection and destruction of ATI and ATII cells. We show that both type I interferon-negative infected ATII and type I-interferon-positive uninfected ATII cells succumb to TNF-induced necroptosis, BTK-induced pyroptosis and a new PANoptotic hybrid form of inflammatory cell death that combines apoptosis, necroptosis and pyroptosis in the same cell. We locate pathway components of these cell death pathways in a PANoptosomal latticework that mediates emptying and disruption of ATII cells and destruction of cells in blood vessels associated with microthrombi. Early antiviral treatment combined with inhibitors of TNF and BTK could preserve ATII cell populations to restore lung function and reduce hyperinflammation from necroptosis, pyroptosis and panoptosis.


Subject(s)
Adenocarcinoma, Bronchiolo-Alveolar , Lung Diseases , Pneumonia , COVID-19
3.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.08.17.238444

ABSTRACT

The human microbiota has a close relationship with human disease and it remodels components of the glycocalyx including heparan sulfate (HS). Studies of the severe acute respiratory syndrome coronavirus (SARS-CoV-2) spike protein receptor binding domain suggest that infection requires binding to HS and angiotensin converting enzyme 2 (ACE2) in a codependent manner. Here, we show that commensal host bacterial communities can modify HS and thereby modulate SARS-CoV-2 spike protein binding and that these communities change with host age and sex. Common human-associated commensal bacteria whose genomes encode HS-modifying enzymes were identified. The prevalence of these bacteria and the expression of key microbial glycosidases in bronchoalveolar lavage fluid (BALF) was lower in adult COVID-19 patients than in healthy controls. The presence of HS-modifying bacteria decreased with age in two large survey datasets, FINRISK 2002 and American Gut, revealing one possible mechanism for the observed increase in COVID-19 susceptibility with age. In vitro, bacterial glycosidases from unpurified culture media supernatants fully blocked SARS-CoV-2 spike binding to human H1299 protein lung adenocarcinoma cells. HS-modifying bacteria in human microbial communities may regulate viral adhesion, and loss of these commensals could predispose individuals to infection. Understanding the impact of shifts in microbial community composition and bacterial lyases on SARS-CoV-2 infection may lead to new therapeutics and diagnosis of susceptibility. O_FIG O_LINKSMALLFIG WIDTH=200 HEIGHT=136 SRC="FIGDIR/small/238444v1_ufig1.gif" ALT="Figure 1"> View larger version (35K): org.highwire.dtl.DTLVardef@14ff1ecorg.highwire.dtl.DTLVardef@193d84corg.highwire.dtl.DTLVardef@15d6f9eorg.highwire.dtl.DTLVardef@14b16c6_HPS_FORMAT_FIGEXP M_FIG Graphical Abstract. Diagram of hypothesis for bacterial mediation of SARS-CoV-2 infection through heparan sulfate (HS).It is well known that host microbes groom the mucosa where they reside. Recent investigations have shown that HS, a major component of mucosal layers, is necessary for SARS-CoV-2 infection. In this study we examine the impact of microbial modification of HS on viral attachment. C_FIG


Subject(s)
Adenocarcinoma , Severe Acute Respiratory Syndrome , COVID-19 , Cerebrospinal Fluid Leak
4.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.08.17.254839

ABSTRACT

Integrated, up-to-date data about SARS-CoV-2 and coronavirus disease 2019 (COVID-19) is crucial for the ongoing response to the COVID-19 pandemic by the biomedical research community. While rich biological knowledge exists for SARS-CoV-2 and related viruses (SARS-CoV, MERS-CoV), integrating this knowledge is difficult and time consuming, since much of it is in siloed databases or in textual format. Furthermore, the data required by the research community varies drastically for different tasks - the optimal data for a machine learning task, for example, is much different from the data used to populate a browsable user interface for clinicians. To address these challenges, we created KG-COVID-19, a flexible framework that ingests and integrates biomedical data to produce knowledge graphs (KGs) for COVID-19 response. This KG framework can also be applied to other problems in which siloed biomedical data must be quickly integrated for different research applications, including future pandemics. BIGGER PICTUREAn effective response to the COVID-19 pandemic relies on integration of many different types of data available about SARS-CoV-2 and related viruses. KG-COVID-19 is a framework for producing knowledge graphs that can be customized for downstream applications including machine learning tasks, hypothesis-based querying, and browsable user interface to enable researchers to explore COVID-19 data and discover relationships.


Subject(s)
COVID-19
5.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.08.17.251728

ABSTRACT

The SARS-CoV-2 pandemic has led to public health, economic, and social consequences that mandate urgent development of effective vaccines to contain or eradicate infection. To that end, we evaluated a novel amphiphile (AMP) vaccine adjuvant, AMP-CpG, composed of diacyl lipid-modified CpG, admixed with the SARS-CoV-2 Spike-2 receptor binding domain protein as a candidate vaccine (ELI-005) in mice. AMP immunogens are efficiently delivered to lymph nodes, where innate and adaptive immune responses are generated. Compared to alum, AMP immunization induced >25-fold higher antigen-specific T cells which produced multiple Th1 cytokines and trafficked into lung parenchyma and respiratory secretions. Antibody responses favored Th1 isotypes (IgG2bc, IgG3) and potently neutralized Spike-2-ACE2 receptor binding, with titers 265-fold higher than the natural immune response from convalescent COVID-19 patients; responses were maintained despite 10-fold dose-reduction in Spike antigen. Both cellular and humoral immune responses were preserved in aged mice. These advantages merit clinical translation to SARS-CoV-2 and other protein subunit vaccines.


Subject(s)
COVID-19
SELECTION OF CITATIONS
SEARCH DETAIL